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Abstract
The application of phase-field modeling to nucleation as a phenomenon at the nanoscale is
justified, if one takes into account the great success of continuum approaches in nanofluidics as
proven by the many comparisons to experiments. Employed in this manner it provides an
approach allowing us to account for effects of the physical diffuseness of a nucleus’ interface
and thereby go beyond classical nucleation theory (Gránásy and James 2000 J. Chem. Phys.
113 9810; Emmerich and Siquieri 2006 J. Phys.: Condens. Matter 18 11121). Here we extend
the focus of previous work in this field and address the question of how far the phase-field
method can also be applied to gain further insight into nucleation statistics, in particular the
nucleation prefactor appearing in the nucleation rate. In this context we describe in detail a
morphology-dependent crossover effect noticeable for the nucleation rate at small driving
forces.

1. Introduction

Nucleation is a complex fluctuation phenomenon. Atomistic
simulations performed by Swope and Andersen [1] and Wolde
and Frenkel [2] reveal that, even during homogeneous crystal
nucleation in a single-component liquid, several local atomic
arrangements (bcc, fcc, hcp, icosahedral) compete, of which
oftentimes a metastable phase becomes dominant. For multi-
component and phase alloys the complexity increases, as
the composition of nuclei enters as an extra state variable.
Nevertheless, the development of approaches towards multi-
component nucleation is still based on the classical kinetic
theory of nucleation, which had first been formulated
by Farkas [3] and Becker and Döring for homogeneous
nucleation, and was successively adopted for general first-
order phase transformations in condensed matter physics by
Turnbull and Fisher [4]. The approach relies on a set of master
equations that consider only single-molecule attachment and
detachment processes (a good approximation in the early
stages of solidification). Analytical as well as numerical
treatment of the problem indicates that, after a transient

period, steady state conditions are established, under which the
nucleation rate, i.e. the net volumetric formation rate of critical
fluctuations, can be expressed as

I = I0 exp

(
�F�

kBT

)
. (1)

Here I0 is the nucleation prefactor, which is assumed
to be constant in classical theories [16]—an empirical
assumption which is contradicted by recent theoretical studies
in [17], which are themselves in accordance with experiments
in organic crystals. F� is the free energy of critical
fluctuations, while kB and T are the Boltzmann factor and
the temperature, respectively. In determining the free energy
of the heterophase fluctuations, the classical nucleation theory
relies on the droplet model (introduced by Gibbs for studying
phase stability), which views the heterophase fluctuations as
spherical crystals, which free energy is expressed in terms of
their radius R, the volumetric free energy difference �g(< 0)

between bulk and crystal and the undercooled liquid, as well as
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the interfacial free energy γ :

F =
(

4π

3

)
R3�g + 4π R2γ. (2)

Equation (2) reveals that a maximum of F� =
(16π/3)γ 3/�g2 is reached at the critical radius R� =
−2γ /�g.

The adaptation of this classical droplet model to
heterogeneous nucleation has been reviewed by Christian [5].
The most commonly discussed model in this context is the
spherical cap model taking into account the free energy
reduction due to the creation of a triple junction line between
the nucleating solid, the liquid and a pre-existing solid phase
(container wall, foreign particle, primary phase), which acts
as a substrate. Under such conditions only a fraction of
the homogeneous nucleus needs to be formed by random
fluctuations, a phenomenon that reduces the height of the
nucleation barrier. For a planar interface, the critical
fluctuation is a spherical cap, whose size is determined by the
contact angle θ between the solid–substrate and liquid–solid
interfaces. The latter—in turn—is fully determined by the
free energies of the solid–liquid, solid–substrate and liquid–
substrate interfaces. Under such conditions, the ratio of the
free energies of the heterogeneous and homogeneous nuclei is
given by the catalytic potency factor:

f (θ) = (2 + cos θ)(1 − cos θ)2/4. (3)

The drawbacks of classical nucleation theory emerge from
those of the droplet model, which rely on the thermodynamic
properties of the macroscopic bulk phase, when calculating
the free energy of near-critical clusters. According to the
experiments by Howe [6] and Huisman et al [7] and computer
simulations, as reviewed by Laird and Haymet [8], the
crystal–liquid and crystal–glass interfaces are diffuse on the
molecular scale, extending over several molecular layers,
with an interface thickness comparable to the size of critical
fluctuations. This invalidates the main assumption of the
droplet model that the interface thickness is negligible with
respect to the size of the fluctuations. As a consequence two
new challenges emerge.

(i) To derive a kinetic theory that incorporates the differences
in the diffusion of the individual species.

(ii) To develop models that include the dependence of the
Gibbs free energy and interface free energy on cluster
composition and cluster size for multi-component alloys.

Reviews by Gunton [9], Gránásy and James [10] and
Oxtoby [11] give a survey on these new developments.
Moreover, focusing on the heterogeneous nucleation event tied
to the nucleation of a new nucleus on the surrounding system’s
wall, first steps were set by Castro [12] and Gránásy et al [13].
Castro [12] introduced walls into a single-order-parameter
model (one-component case) by assuming a no-flux boundary
condition at the interface (n∇φ = 0, where n is the normal
vector of the wall), which results in a contact angle of 90◦ at
the wall–solid–liquid triple junction. Subsequently Langevin
noise is introduced to model nucleation. Following a similar

route, Gránásy et al [13] introduced chemically inert surfaces
(n∇φ = 0 and n∇c = 0 at the wall perimeter) into a binary
phase-field theory while incorporating an orientation field, and
performed simulations to address heterogeneous nucleation
on foreign particles, at rough surfaces and in confined space
(porous matter and channels). This work has recently been
extended by the author and others in [14, 15]. Here we
extend the focus of previous work in this field and address the
question of how far it can also be applied to gain further insight
into nucleation statistics, in particular the nucleation prefactor
appearing in the nucleation rate. In this context we describe in
detail a morphology-dependent crossover effect noticeable for
the nucleation rate at small driving forces. We apply our study
to Al–Ni. This allows us to exploit our own previous joint
theoretical–experimental studies on this system [19] which
enabled us to calibrate our phase-field model quantitatively.
That joint study focuses on growth phenomena as the ones
accessible with the experimental techniques employed in that
reference. The nucleation event, in particular the individual
one, is in contrast hard to access in such metallic systems. The
studies we report here allow us to extend the understanding
we obtained for specific growth phenomena in peritectic Al–
Ni to nucleation therein and thus obtain a comprehensive
picture about the initial stages of growth in Al–Ni. For
details regarding the calibration the reader is referred to [19].
Furthermore our work is based on our own work in the field of
heterogeneous nucleation involving the phase-field method in
which we could demonstrate that the approach is well suited to
access nucleation barriers [18]. Here we go a step further and
focus on comparison to the results of Liu [17] on the question
of what understanding it allows us to extract regarding the
kinetic prefactor arising in the nucleation rate.

To show how the phase-field method can be employed to
questions of nucleation statistics related to the kinetic prefactor
I0 and the study in [17]1 we proceed as follows: we will first
briefly describe our methodological approach in section 2 of
this paper. We will then—in section 3—proceed to our precise
studies of the nucleation rates in Al–Ni, which allow us to shed
new light on the contradictory claim arising from the paper
by Liu in comparison to classical theories (see, e.g., [16]).
One result which we report in more detail in this context is a
morphology-dependent crossover of the nucleation rate found
at high undercoolings independent of I0. Finally we conclude
with a discussion of our results, their interpretation and the
outlook in section 4.

2. Brief review of our model

2.1. Phase-field modeling of peritectic material systems

In this section we brief describe the phase-field formulation
employed to compute heterogeneous nucleation. We use an

1 Note that the focus of that study is on the nucleation of seed phases in
general rather than only properitectic ones combined with the question of what
cases true homogeneous nucleation can occur in comparison to heterogeneous
nucleation. What is analogous to our studies is that, in this context, the effect of
the radius of a seed grain on resulting nucleation energies and corresponding
nucleation rates is investigated, revealing similar crossover effects as we see
them in our study, and used to claim the form of the kinetic prefactor I0 in a
way that does not agree with our studies (for details see section 3).
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isothermal version of the model described in [19]. For further
details of the model see [19, 23]. The starting point of our
phase-field modeling approach for heterogeneous nucleation is
the free energy functional of a representative volume of the
investigated material system. This free energy functional is
given by the volume integral

F =
∫

V

{
W (θ)2

2

∑
i

(∇ pi)
2 +

∑
i

pi
2(1 − pi)

2

+ λ̃

[
1
2

[
c −

∑
i

Ai(T )gi( �p)

]2

+
∑

i

Bi(T )gi( �p)

]}
dV ,

(4)

where W (θ) depends on the orientation of the interface and λ̃

is a constant. The function gi couples the phase field to the
concentration and the temperature [19].

The coefficients Ai(T ) and Bi(T ) define the equilibrium
phase diagram [23]:

Ai(T ) = ci ∓ (ki − 1)U, AL = 0,

Bi(T ) = ∓AiU BL = 0,

where U = (Tp − T )/(|mi |�C) is the dimensionless
undercooling, ki are the partition coefficients, and AL and BL

are the corresponding liquid coefficients.
As described in [19] we use three phase fields pi ∈ [0, 1],

where p1 labels the properitectic phase, p2 the peritectic phase
and p3 the liquid phase, represented by �p ≡ (p1, p2, p3).

Their dynamics are derived from the free energy
functional F :

τ
∂ pi

∂ t
= − 1

H

δF
δpi

, (5)

where τ is a relaxation time.
The concentration field is given by

∂c

∂ t
= �∇ ·

(
D( �p) �∇ δF

δc

)
, (6)

where D( �p) is a phase-dependent diffusivity.
Model equations (5) and (6) were solved numerically in

the same way as described in [19].

2.2. Investigating heterogeneous nucleation in peritectic
material systems via the phase-field method

In solidification experiments the final microstructure is
determined by both the peritectic growth dynamics as well
as the microstructure growth kinetics. Therefore, for a full
quantitative comparison with experiments, it is essential to
analyze the heterogeneous nucleation kinetics of the above
peritectic material system as well. For such a system
a nucleation event arises as a critical fluctuation, which
is a non-trivial time-independent solution of the governing
equations we can derive from the underlying free energy
functional. Our derivation follows the standard variational
procedure of phase-field theory (for a review see, e.g., [21]
and references therein). Solving equations (4)–(6) numerically
under boundary conditions that prescribe bulk liquid properties

far from the fluctuations (pi → 1 and c → c∞ at the outer
domain boundaries) and zero field gradients at the center, one
obtains the free energy of the nucleation event as

�F∗ = F − F0. (7)

Here F is obtained by numerically evaluating the integration
over F after having the time-independent solutions inserted,
while F0 is the free energy of the initial liquid. Based on (7)
the corresponding nucleation rate can be calculated as follows:

I = I0(Rs) exp{−�F∗/kT }, (8)

where Rs denotes the radius of the seed grain, which is, in our
case, the primary, properitectic grain. Notice that this deviates
from the classical form given in the above equation (1) in
the sense that I0 does not necessarily need to be constant any
longer. Rather we have set I0 to I0(Rs) to indicate that in the
following we will test different forms of I0: (a) the classical,
constant form, thus assuming an Rs-independent form for I0

and (b) the Rs-dependent one given by Liu in [17] as follows:

I0(Rs) = 4πa(Rs)
2 N0 f ′′(m, x)[ f (m, x)]1/2 B (9)

with

f (m, x) = 1/2 + 1/2

(
1.0 − xm

w

)3

+ 1/2x3

[
2.0 − 3

(
x − m

w

)
+

(
x − m

w

)3]

+ 3

2
mx2

(
x − m

w
− 1

)

where w = (1 + x2 − 2xm)1/2, x = Rs/rc and rc is the critical
size of the nucleating phase.

This allows us to shed new light on the contradictory issue
whether (a) or (b) is the more appropriate form.

3. Reaccessing I0 at the example of Al–Ni

Focusing on Al–Ni allows us to make use of our own results
obtained in tight collaborative experimental–theoretical studies
of that system [19]. To our knowledge these are the first
systematic studies of nucleation energies and related nucleation
rates in Al–Ni. All the calculations are performed for the
isothermal case and for an initial alloy composition c∞ =
23 mol% with alpha concentration cα = 35 mol% and beta
concentration cβ = 25 mol%. We use a linearized version of
the Al–Ni phase diagram and choose mα = 6642.8 K/mol%
and mβ = 19000.0 K/mol%. The partition coefficients are
taken as kα = kβ = 1.0. The diffusion constant in the
liquid phase is taken as DL = 1 × 10−9 m2 s−1 and in the
solid DS = 0. We assume equal surface tension in both solid
phases of value σβ,L = σα,L = 0.09 J m−2; moreover σα,β =
0.068 J m−2. The undercooling �T was varied from 0.03 to
0.9. We perform our tests in a simulation box of 300×300 grid
points, corresponding to a sample of 80 μm × 80 μm. With
these parameter configurations we studied the cases where the
radius Rs = 20, 30 and 40 grid points.
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Figure 1. ln(1/I ) versus 1/[ln(1 + �T )]2 to display the dependence
of I0 on the driving force �T . Nucleation rates are evaluated based
on our phase-field approach assuming a classical, i.e. constant, I0.

Figure 2. The same as in figure 1: however, nucleation rates are
evaluated based on our phase-field approach assuming an
Rs-dependent value for I0 as given by equation (19) of [17].

More precisely we have been interested in the dependence
of the nucleation rate on the radius of the underlying seed phase
Rs. For this we could already see in our previous work on
Fe–Ni [18] that the nucleation rate is generally larger for (low
curved) seed nuclei of larger radius and also on non-faceted
compared to faceted nuclei if we nucleate in the corner of the
facet. This has also been found in Monte Carlo studies and
qualitatively for Nd–Fe–B.

At high driving forces (left part of figures 1–3), however,
we see a crossover effect, i.e. nucleation on stronger curved
(and thus smaller) seed nuclei becomes more favorable. This is
depicted in this paper for Al–Ni in figure 1. In our calculations
underlying that figure we follow the classical nucleation theory
assuming a constant I0. The crossover effect on which we
focus here can also be found in figure 4 of [17]2. In [17],

2 Note that the driving force there is rather the supersaturation than the
temperature. The thermodynamic equivalence of these two in their role as the
main driving force for microstructure evolution has been explained in detail
in [21, 20, 24].

Figure 3. Integrated curvature of the phase-field versus
1/[ln(1 + �T )]2.

however, the author assumes an Rs-dependent form of I0.
With this form his theoretical studies are in good agreement
with experiments in organic crystals. This leads Liu to the
conclusion that a non-constant but rather the Rs-dependent
form of I0 given in equation (19) of his article [17] should
be a more correct form of I0 than the classically assumed
one. Our studies summarized in figure 1, however, reveal
that in our studies such a crossover is also observable if we
calculate the nucleation rate based on the nucleation energies
determined via our phase-field simulations simply following
the classical relation given by equation (1) with constant I0. In
fact, the appearance of the crossover as such—and with it the
appearance of the different nucleation regimes Liu identifies—
is independent of the precise form of I0, as we verified by
repeating our calculations with the kinetic prefactor given by
equation (19) of [17]. These calculations are depicted in
figure 2. If we compare figures 1 and 2 we can see that
the respective curves deviate little quantitatively and hardly
qualitatively. Thus the appearance of the crossover and the
different nucleation regimes which can be deduced from that
crossover do not allow us to claim a precise form of I0 different
from the classical one according to our studies. In this context
one should note, too, that according to our studies the crossover
as such should already appear in that regime of the nucleation
rate curves, where these are still curved logarithm-like as
shown in our figures, rather than after the turning point at still
higher undercoolings as implied by [17].

Based on additional phase-field simulation studies we are
also able to understand the physical origin of that crossover,
which appears to be the interface diffusivity, which changes
with undercooling. As measured for that interface diffusivity,
i.e. the interface width, which at the critical point investigated
here corresponds to the correlation length [22], we evaluated
the integrated curvature of the phase field and plotted it versus
temperature3. This plot is shown in figure 3. It displays
an analogous crossover: for small radii of the seed nucleus

3 The integrated curvature is calculated according to κ(p1) =∫
V −∇(∇ p1/|∇ p1|) dV . Thus it gives a measure for the interface width of

the relevant phase-field order parameter.
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the integrated curvature of the phase field is larger at high
undercoolings than that of the larger radii. Since the interfacial
width is inversely proportional to the integrated curvature this
implies, too, that in turn the interfacial width is larger for the
larger radii at high undercoolings. This yields an explanation
for the observed crossover in the nucleation rate: small seed
nuclei with large curvature are generally favorable for the
nucleation rate on such seeds, since this comes along with
an increased surface area exposed to the nucleating phase (or,
more precisely, an improved surface to volume ratio compared
to a less curved substrate). However, the same accounts for
an enlarged surface area due to an enlarged interfacial width—
which Liu calls ‘effective surface embryos’. Now the decrease
of the interfacial width, which the small nuclei undergo at
smaller driving forces (right part of the figures), obviously
overrides the first effect and thus helps to understand why
at smaller undercoolings nucleation becomes more favorable
on the seed grains with larger radii. In the sense that Liu
conjectures a similar reason for the crossover in his studies,
namely the increased ‘effective surface embryos’, our studies
reconcile with his from the point of view of the physical
interpretation. Nevertheless our studies question his Rs-
dependent form of I0, as well. Certainly there is demand
for research focusing on a more precise form of I0, which
goes beyond classical nucleation theory. If there is more high
accuracy experimental data available of nucleation rates in
particular within the high undercooling regime, the phase-field
approach, which we present here, can contribute to that open
issue: as demonstrated here it allows us to test different forms
of I0 and thus could—in close comparison to experiments—
help to identify ideal ones beyond the classical theories.

4. Summary and outlook

To summarize, in this paper we have employed the phase-field
approach to determine nucleation energies of heterogeneously
nucleating peritectic material systems, which we introduced
earlier in [18], for a systematic study of heterogeneous
nucleation in Al–Ni with a special focus on (a) a crossover
in the nucleation rates at high undercoolings and (b) on the
kinetic prefactor I0. We can explain point (a) based on our
phase-field approach as a morphology-dependent crossover
of the correlation length. Details are given in the previous
section. For (b) we referred to previous work by Liu [17],
who identified the same crossover and corresponding different
regimes of heterogeneous nucleation via a different theoretical
approach. Since he found experimental agreement for his

studies and furthermore, since he assumed an Rs-dependent
form of I0 in his investigations, he claimed this form to be
more appropriate than the classical constant one. This claim,
however, is contradictory to our studies, which identify the
crossover based on the assumption of a constant I0. Moreover
we can show that the crossover as such is independent of the
two forms of I0, leaving the issue of an I0 beyond classical
nucleation theory open at this point. If there is more high
accuracy experimental data available of nucleation rates in
particular within the high undercooling regime, the phase-field
approach, which we follow here, can contribute to that open
issue: as demonstrated here it allows us to test different forms
of I0 and thus could—in close comparison to experiments—
help to identify ideal ones beyond the classical theories.
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